Articulations and Movement

Pronation

Supination
Articulations or Joints

• **Articulation or Joint**
 – Place where two bones come together
 – Freely movable to limited to no apparent movement
 – Structure correlated with movement

• **Named**
 – According to bones or parts united at joint
 – According to only one of articulating bones
 – By Latin equivalent of common name
Classification of Joints

• **Structural**: Based on major connective tissue type that binds bones
 – Fibrous
 – Cartilaginous
 – Synovial

• **Functional**: Based on degree of motion
 – Synarthrosis: Nonmovable
 – Amphiarthrosis: Slightly movable
 – Diarthrosis: Freely movable
Fibrous joints

• **Suture**
 – Bones tightly bound by minimal fiber
 – Only found in skull

• **Syndemoses**
 – Bones connected by ligaments
 – E.g. tibiofibular ligament, interosseous membrane of radius/ulna

• **Gomphoses**
 – Peg in socket joint
 – Only found in teeth/alveoli

Fig. 9.1 a, M&M
• **Suture**
 - Bones tightly bound by minimal fiber
 - Only found in skull

• **Syndemoses**
 - Bones connected by ligaments
 - E.g. tibiofibular ligament, interosseous membrane of radius/ulna

• **Gomphoses**
 - Peg in socket joint
 - Only found in teeth/alveoli
Fibrous joints

- **Suture**
 - Bones tightly bound by minimal fiber
 - Only found in skull
- **Syndesmosis**
 - Bones connected by ligaments
 - E.g. tibiofibular ligament, interosseous membrane of radius/ulna
- **Gomphosis**
 - Peg in socket joint
 - Only found in teeth/alveoli
Cartilaginous Joints

- **Synchondroses**
 - Hyaline cartilage unites bones
 - Epiphyseal growth plates
 - Costal cartilage-sternum

- **Symphysis**
 - Fibrocartilage unites bones
 - Pubic symphysis
 - Intervertebral disc

Fig. 9.2, M&M
Synovial Joints

• Most common joints in body
• Most mobile joints
• Have
 – Articular surfaces on bone with hyaline cartilage
 – Completely enclosed joint capsule formed from ligamentous connective tissue
 – Synovial fluid within capsule lubricates joint
 – Some have meniscus or articular disc (e.g. knee, jaw joint)
Synovial joints

• Components of synovial joints
 – Articular cartilage
 • Resemble hyaline cartilage
 – Matrix contains more water comparatively
 • Has no perichondrium
 • Slick and smooth, so reduce friction
 • Separated by thin film of synovial fluid
Components of synovial joints (continued)

- **Joint capsule**
 - Dense and fibrous
 - May be reinforced with accessory structures (tendons and ligaments)
 - Continuous with periosteum of each bone
Components of synovial joints (continued)

- **Synovial fluid**
 - Similar in texture to egg whites
 - Produced at the synovial membrane
 - Circulates from areolar tissue to joint cavity
 - Percolates through articular cartilages
 - Total quantity is less than 3 mL
Functions of synovial fluid

- **Lubrication**
 - With articular cartilage compression, synovial fluid is squeezed out and reduces friction between moving surfaces

- **Synovial fluid distribution**
 - Provide nutrients and oxygen, as well as waste disposal for the chondrocytes of articular cartilages
 - Compression and reexpansion of articular cartilages pump synovial fluid in and out of cartilage matrix

- **Synovial fluid absorption**
 - Distributes compression forces across articular surfaces and outward to joint capsule
Joint Accessory

- **Bursa** (a pouch)
 - Small pocket filled with synovial fluid
 - Often form in areas where tendon or ligament rubs against other tissues
 - Reduce friction and act as shock absorbers
Accessory structures in knee (continued)

- **Fat pads**
 - Adipose tissue covered by synovial membrane
 - Protect articular cartilages
 - Act as packing material for joint

- **Meniscus (a crescent)**
 - Pad of fibrous cartilage between bones of synovial joint
 - May subdivide joint cavity and affect fluid flow or allow variations in shapes of articular surfaces
• Accessory structures in knee
 – Tendons of quadriceps
 • Pass across joint
 – Limit movement
 – Provide mechanical support
• Accessory ligaments
• ________________, strengthen, and reinforce joint
• Intrinsic ligaments
 – Localized thickening of joint capsule
 – Example: cruciate ligaments of knee
• ________________ ligaments
 – Separate from joint capsule
 – May pass inside (intracapsular) or outside (extracapsular) the joint capsule
 – Intracapsular example: cruciate ligaments
 – Extracapsular example: patellar ligament
Synovial joints

- **Motion vs. strength in joints**
 - Greater range of motion = ____________ joint
 - Examples:
 - Synarthrosis (strongest type of joint, no movement)
 - Diarthrosis (far weaker but broad range of motion)
- **Displacement (luxation)**
 - Movement beyond normal range of motion
 - Articulating surfaces forced out of position
 - Can damage joint structures
 - No pain from inside joint but from nerves or surrounding structures
Types of Synovial Joints

- Plane or gliding
- Saddle
- Hinge
- Pivot
- Ball-and-socket
- Ellipsoid
Plane and Pivot Joints

- Plane or Gliding joints
 - Monoaxial
 - Example: Articular processes between vertebrae

- Pivot joints
 - Monoaxial
 - Example: Articulation between dens of axis and atlas
Saddle and Hinge Joints

- Saddle Joints
 - Biaxial
 - Example: Thumb

- Hinge Joints
 - Monoaxial
 - Example: elbow, knee
Ellipsoid and Ball-and-Socket Joints

- **Ellipsoid**
 - Modified ball-and-socket
 - Biaxial
 - Example: Atlantooccipital joint

- **Ball-and-socket**
 - Multiaxial
 - Examples: shoulder and hip joints
Types of Movement

• **Gliding**

• **Angular**
 – Flexion and Extension
 • Hyperextension
 • Plantar and Dorsiflexion
 – Abduction and Adduction

• **Circular**
 – Rotation
 – Pronation and Supination
 – Circumduction
Flexion and Extension
Dorsiflexion and Plantar Flexion
Abduction and Adduction
Rotation and Pronation and Supination

Lateral rotation

Medial rotation

Pronation

Supination
Circumduction
Special Movements

• **Unique** to only **one or two** joints

• **Types**
 – Elevation and Depression
 – Protraction and Retraction
 – Opposition and Reposition
 – Inversion and Eversion
Elevation and Depression
Protraction and Retraction
Excursion

Lateral excursion to the right

Lateral excursion to the left

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Opposition and Reposition
Inversion and Eversion
Range of Motion

- Amount of **mobility** demonstrated **at a given joint**
- **Types**
 - Active
 - Passive
- **Influenced by**
 - Shape of articular surfaces forming joint
 - Amount and shape of cartilage covering surfaces
 - Strength and location of ligaments and tendons
 - Location of muscles associated with joint
 - Amount of fluid in and around joint
 - Amount of use/disuse of joint
 - Amount of pain in and around joint
Effects of Aging on Joints

• Tissue repair slows
• Production of synovial fluid declines
• Ligaments and tendons become less flexible
• Decrease in ROM
Joint Disorders

• Arthritis
 – Osteoarthritis: Wear and tear
 – Rheumatoid: Caused by transient infection or autoimmune disease

• Joint infections
 – Lyme disease: Tick vector

• Gout
 – Metabolic disorders of unknown cause (idiopathic)
X-ray of hand affected by arthritis
Artificial Hip Joint